The ethics of wasting the donor’s gift of buffy coat

E. C. Vamvakas
Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Dear Editor,

Schrezenmeier and Seifried [1] observed that – albeit rare – donor reactions with plateletapheresis collections can be more frequent/severe compared with whole-blood collections. They then argued that – because all platelet transfusion needs of patients not alloimmunized to HLA antigens can be met by pooling (already-available) buffy coats from the whole-blood donations – donor reactions to any plateletapheresis collections represent an ‘additional’ (hence unnecessary and hard to justify) risk.

As Table 1 shows for the US [2], any country with a North-American/Western-European health-care system requires several times more red-blood-cell (RBC) than platelet or fresh frozen plasma (FFP) doses to meet the needs of all its transfusion recipients. Modern apheresis technology permits blood operators to collect large-size units of plasma, as well as ‘double’ RBCs, in addition to single-donor platelets. Furthermore, it allows blood operators to collect RBCs along with platelets and/or plasma [3, 4]. Thus, modern apheresis technology could enable national blood services to collect large-size units of plasma, as well as ‘double’ RBCs, in addition to single-donor platelets. Furthermore, it allows blood operators to collect RBCs along with platelets and/or plasma [3, 4].

Importantly, and in contrast to the historical literature on donor reactions reviewed by Schrezenmeier and Seiffried [1], this modern approach to meeting all of a country’s needs should not be associated with any increase in donor reactions. In the largest reported multivariate analysis of moderate and severe donor reactions, Kamel et al. [5] observed no increase in donor reactions following each of three types of apheresis collections compared with whole-blood donation (Table 2).

Table 1 Number of therapeutic doses of each blood component transfused in the US in 2006*

<table>
<thead>
<tr>
<th>Component</th>
<th>Number (in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBCs</td>
<td>14 650</td>
</tr>
<tr>
<td>Platelets</td>
<td>1731</td>
</tr>
<tr>
<td>Plasma</td>
<td>4010</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>993</td>
</tr>
</tbody>
</table>

* A dose is defined here as 1 unit of RBCs, 1 single-donor platelet concentrate (or a pool of 6 whole-blood-derived platelet concentrates), 1 unit of FFP, or 1 unit of cryoprecipitate [2, pp. 21–22].

Table 2 Moderate and severe donor reactions by collection type*

<table>
<thead>
<tr>
<th>Collection type</th>
<th>Reaction rate per 10 000 (number of reactions/number of procedures)</th>
<th>Odds ratio (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-blood donation</td>
<td>52 (2872/552 183)</td>
<td>N/A*</td>
</tr>
<tr>
<td>Platelet-/plasmapheresis</td>
<td>17 (93/54 841)</td>
<td>0·54 (0·34–0·85)*</td>
</tr>
<tr>
<td>‘Double’ RBC collection</td>
<td>15 (21/164 179)</td>
<td>0·67 (0·49–0·91)*</td>
</tr>
<tr>
<td>RBC collection along with platelets and/or plasma</td>
<td>45 (2/18 790)</td>
<td>0·95 (0·58–1·55)</td>
</tr>
</tbody>
</table>

*Comparison of each of three types of apheresis collections to whole-blood donation; based on 793 293 allogeneic whole-blood and apheresis collections made in 2007 in the US [5].

*Compared to the odds of a donor reaction(s) following whole-blood donation; from a multivariate model into which (in addition to collection type) the following variables were eligible for entry: donation site (fixed vs. mobile), association type (high school vs. college vs. other), age, sex, race, donation history, blood volume, weight, body mass index, pulse, systolic blood pressure, diastolic blood pressure, and blood centre identifier [5].

Statistically significant (*P < 0·05*) reduction in the odds of a donor reaction in association with the specific apheresis collection versus whole-blood donation [5].
virus, and hepatitis B virus infections as well. The difference in infectious risks is due to the difference in the number of allogeneic-donor exposures (4–6 vs. 1, respectively [7]) per therapeutic platelet dose given to a transfusion recipient. Depending on the assumptions made, the plausible range for the difference in risk between PWBD and apheresis components varies from 2- to 6-fold [7]. While bleeding of ‘additional’ donors will not be needed for providing 100% single-donor platelets when modern apheresis technology is comprehensively used by national blood services, avoidance of the incremental infectious risk of buffy-coat PWBD platelets will continue to justify wasting the donor’s gift of buffy coat (rather than using it to produce PWBD platelets).

References
1 Schrezenmeier H, Seifried E: Buffy-coat-derived pooled platelet concentrates and apheresis platelet concentrates: which product type should be preferred? Vox Sang 2010; 99:1–15

Received: 2 July 2010, accepted 16 August 2010

Eleftherios C. Vamvakas, MD, PhD
Department of Pathology and Laboratory Medicine
Cedars-Sinai Medical Center
8700 Beverly Ave, South Tower, Room 3733
Los Angeles, CA 90048, USA
E-mail: vanvakase@csbs.org

© 2010 The Author(s)